Extreme Detail Graphics

Jan Svarovsky

jan@svarovsky.org

Introduction

Most first-person games are either set indoors or in the foggy outdoors. Apart from gameplay reasons, this is done to reduce the amount of scene that the engine has to render so that the visible parts can be more complex and interesting. I wanted to write an engine where you could have a large complex scene visible with unrestricted viewing distance, without reducing the amount of small-scale detail and the number of objects in the world. Objects such as vehicles, characters and buildings would seem to be highly detailed. Close by flat surfaces would be seen to be polygon meshes and characters would be well animated, and also there would be a high texture density, so that (for example) shop front textures would vary around the scene.

The principle of level of detail (LOD)

A year or two ago the idea of varying level of detail renderers was quite new, but now everyone understands that objects visible in the distance should be less expensive to draw than things nearby. In this engine I took this to the extreme, in that the philosophy went through the whole design, the mesh renderer, animations, textures, and procedural graphics such as explosions. This way I got away with giving the impression of a very highly detailed scene because at any one time most of the scene was far away from the camera, so could be rendered much more cheaply than the small amount of near-camera detail.

This scalability of the renderers also makes the engine much more future-proof, and lowers the minimum spec of any games built with it. As computers become more powerful, the scene can become more detailed further into the distance. This provides an extra bonus for people with more expensive machines. All too often I have seen hardware vendors advertising the power of their chipsets by showing the same graphics, just running at needlessly high resolutions and framerates. At the other end, games are often playable (which is the most important thing) at a much lower level of detail than intended, though the scenes might not be all that nice to look at.

In this paper I shall discuss the level of detail systems that went into this engine, why they did and others didn’t, and what experiences I had during its development. I will briefly mention most of the technologies that went in, but I will concentrate discussion on the following:

· Simplifying the geometry of the scene with distance from the camera

· A texture cache that lets lots of different textures be visible at the same time, taking advantage of the fact that at any moment most of them will be small on-screen

· The animation system for high numbers of cheap small characters and a few expensive quality animations near the camera

· A visibility culling algorithm because people always want to go inside the buildings even though you’re writing a whole-city engine, and then you have to compete with engines that understand occlusion

· A few extra tricks that you need to accommodate such a great view distance

Some maxims

When discussing decisions made during the design and implementation of this engine, I will refer to some general truths that I came to believe.

These days you cannot justify taking very much CPU time per polygon and vertex per frame. The speed of the cards and even of the bus that drives data into them means that unless you are careful by the time the CPU has thought about what detail it could do without, it may as well have just sent it to the card to render.

The main bottleneck I discovered was cache misses for the CPU. Trawling large amounts of data, or producing the data and then going back to it some time later when it had fallen out of the cache, were large performance hits.

The whole principle of level of detail is that the detail you are losing is insignificant. This means that you should not get too worried about precisely which detail you lose when. As long as only the small details are lost, it does not matter which bits disappear when, or how elegantly they fade away. The main thing is that components of the scene should be cheaper to render when further away.

I believe that whether to use Direct3D geometry or not at the moment and sometime into the future is almost a question of personal taste. D3D geometry is quick and already has the benefit of hardware acceleration in terms of custom code for different CPU’s. Doing your own geometry has the benefits of opening up a part of the render pipeline that would otherwise be a sealed module. This gives you the freedom to make other optimisations and play tricks as we shall see later.

The geometry

Level of detail rendering of polygon meshes can be split up quite easily into two different camps. One is that an artist or level designer builds a high detail object and you’d like an algorithm to draw it more cheaply further away. The other is that simple versions of the objects are built by hand and then the engine adds extra detail or cost to the rendering as it gets closer.

Technologies for creating detailed geometry out of little data include

· Custom renderers such as height fields

· Procedural curves, which are drawn with only enough polygons to make them appear smooth at their current on-screen size

· Conversion of texture detail into polygon detail, such as bump maps into displacement maps.

Technologies for reducing detail include

· Progressive meshes (PM)

· Turning polygon objects into sprites

· Having an artist build several less detailed versions of game objects

If you were writing a game where most of gameplay was over a natural rolling landscape with the occasional building or other man-made object, a custom landscape renderer would be useful. The majority of the scene could be rendered with this, and the occasional building, rocky outcrop, tree and so on could be drawn with a different system.

On the other hand, adding extra detail with curves or displacement maps is useful if the amount of geometry in your scenes has been reduced some other way, for example due to occlusion in an indoors engine. In these you cannot see that much of the whole world at any one time, so it is worth adding extra detail to what you can see.

The scenes I wanted to render were mostly made of hand-built shapes so I was not able to use a custom renderer for the majority of the scene. As they were outdoors scenes there was quite a lot visible even without adding extra detail. I therefore needed to write a technology that reduced level of detail rather than increasing it. I turned to progressive meshes as a way of having more than a few levels of detail for the objects. They could also be used to render the large mesh that was the entire landscape where the parts close to the viewer should be high detail and the parts further away less detailed.

Progressive meshes (PM)

Overview

Progressive meshing is a term first coined by Hughes Hoppe (Microsoft) at Siggraph ’96. He described a clever method to reduce the polygon count of an object by taking details out of it that cause the least change to its shape. The aim is to make the lower detail versions of the object look as similar as possible to the original. Most of the terms I use here are his.

The algorithm can be described simply as taking a mesh, repeatedly deciding which is its least significant edge and collapsing this edge by making the two vertex positions at its ends equal. This typically makes two triangles sharing the edge redundant. This carries on until the remaining mesh is at an acceptable level of detail. Much work has done by people and documented in the public domain. The steps in level of detail for the meshes are quite fine - the edge collapses lose one vertex at a time. By collapsing edges further from the camera preferentially it is possible to render meshes with different levels of detail in different places.

[image: image1.wmf]edge collapse

vertex split

new

triangles

new

vertices

A single step of mesh refinement or reduction

What it fell to me to do was implement and optimise the principle of progressive meshing in a game engine. There were two stages to this, first to make some decisions about what variation on the theme of progressive meshing to implement, and then of course the practicalities of getting it working.

Design decisions

What decisions can be made about progressive meshes? Some of these are interrelated so I’ll try to give them in their order of dependence.

· When two vertices merge, what new position should the merged vertex occupy?

· Do you pre-calculate a single collapse order or do you vary it in some way based on where the camera is?

· Which is the least significant edge at any moment?

· What is the lowest level of detail where the collapse must stop?

Where does the new vertex go

I considered three possibilities. The new point can be at some new position calculated based on the imaginary smooth surface that the polygon mesh is trying to represent. Alternatively you can put the point just halfway in between the two it replaces, which you would think was cheaper somehow, perhaps because you wouldn’t have to store a pre-calculated new point. Lastly you can just choose to preserve one or the other of the original vertices that are being collapsed.

[image: image2.wmf]Imaginary

curved

surface

vertex

polygon

 EMBED Word.Picture.8 [image: image3.wmf]

1) Higher detail mesh

2) New point on hypothetical surface

[image: image4.wmf]

 EMBED Word.Picture.8 [image: image5.wmf]
3) Midpoint – mesh loses volume

4) Pick one of the points – simple

Choices for position of vertices produced by edge collapse

Briefly, the midpoint system has the disadvantage that objects become smaller as they lose detail, the clever precalculated point system takes up twice as much memory, or takes up extra CPU time calculating the new point on-line. Preserving one point or the other is the simplest, takes the least memory and objects do not lose apparent volume. In some cases it may be a better representation of the original shape, particularly when, for example, collapsing the corner of a cube-like object and a vertex somewhere along one of the faces of the cube shape.

A single fixed precalculated collapse order or varying

There are many different ways to write the real-time part of a progressive mesh renderer. Discussion of them will follow later, but at this point I will just mention that there is, of course, a balance between how much work is done off-line and how much while the game is playing.

There are many options, but one clear decision is the following. Objects can have a single precalculated collapse order. This means that all the real-time renderer can decide is what level of detail an object is rendered at, usually based on how far they are from the camera (assuming they’re not rendered at all when off-screen). Alternatively the collapse order can be varied (or indeed calculated on the fly) based on where the camera is relative to the object. Parts of the object nearer to the camera or on silhouette edges could be higher detail while parts further away could be lower detail. Clearly the first method (called view-independent, again after Hughes Hoppe, as the collapse order does not depend on the view) is much cheaper in CPU time than the second (view-dependent).

[image: image15.png]

I will now consider what situations have to arise to justify view-dependent (varying depending on camera position) PM. It allows you to have one part of an object rendered at a different level of detail than another. This is useful if the camera object is much smaller than the progressive mesh, so that it can be significantly closer to one part than to another. In this case to have high detail in the foreground on a view-independent progressive mesh, you would need high detail further away at the same time. Applications of this are, for example, cityscapes and space stations.

A real-time scene rendered with LOD technologies

This can look very impressive. You can be very far away from a space station, and it will be rendered quickly, and as you approach, more detail is resolved until you are very close, seeing individual portholes, docking bays and so on. You can indeed stand on a landscape and see all the way into the distance with fogging only for depth-cueing.

But why bother using this expensive renderer for this reason? You can cut up the space station into smaller single-skin objects, which then are small enough to be collapsed view-independently. Now you have the parts separate, you can assign some game code to them, so they become a bit more interactive. The same is true for the landscape - individual huts, trees and so on can be independent objects. The large sections like the hull of the station or the rolling hills can be built using some custom renderer, like a height field, which uses fewer polygons in the distance in another way. Unless your little fiddly details are going to have some in-game significance, don’t waste an artist’s time building them individually, have code add portholes to your station’s skin at regular intervals, or trees on top of a separate landscape.

Sometimes there still is call for view-dependent progressive meshing. Examples include the streets between buildings that have kerbs and obvious raised pavements, or the smooth outside of the space station if it is to be some complicated shape. I implemented view-dependent progressive meshing, but I tried to use view-independent meshes wherever possible because they were so much more efficient. The difference in CPU cost per polygon rendered means that there must be a significant variation in the level of detail across the object being drawn.

Which is the least significant edge?

Starting with the full detail mesh, you must choose one edge after another to remove. Which edge should you choose? Others have discussed many different heuristics. You should not spend too much time worrying about which you use, once you have a heuristic that looks even fairly good. Remember the maxim of level of detail (LOD) - the whole idea is that these decisions will only affect the details you can hardly see anyway.

I first picked the shortest edge, with little embellishment on that algorithm. The cost of an edge was its length plus half the costs of the two vertices at each end. The cost of a vertex was the cost of the last edge collapse that it was involved in, or zero if none. The trouble with this was that long thin objects such as struts and scaffolding collapsed too early. This was because the short edges at their ends collapse, which removes the whole structure. My second heuristic had the cost of the edge be the greater of the length of that edge and all other edges in the triangles that disappear because of the edge collapse.

In my experience there’s not much significantly better than that, apart from maybe having an artist choose vertices or edit the automatically generated collapse order by hand. No artist I have known thought the results were worth their time. If you do want to, though, it’s quite easy to write an editor that will allow human modification of the collapse order.

In Siggraph ‘97 Hoppe extended progressive meshes to describe an algorithm for view-dependent rendering. I wrote a similar system, but taking texture coordinates and other vertex properties such as normals into account, which, as I shall describe later, complicates things somewhat. The view-dependent renderer still refers to the same edge costs, which are stored in the real-time data structure.

For view-dependent rendering, I first just divided the cost of the vertex by the distance of the camera from it, so edges further away cost less and were collapsed sooner. The test is slightly more complicated than this because though an edge may be far from the viewer its effects may be felt close by. An example is if you are standing on a very large but quite thin platform.

[image: image6.wmf]viewer

vertices may collapse downwards because edges are short

Dangers of considering edges without their effects

The vertical edges of the platform may collapse early, meaning the flat top of the platform is rendered at the wrong position. This is solved by considering the distance of the viewer from the edge’s effect, rather than the edge itself, much like the earlier collapsing strut problem.

Other view-dependent algorithms preserve silhouette edges, which is useful when you have large numbers of polygons describing a smooth surface. You can collapse polygons that do not significantly contribute to the appearance of curvature because they are facing the viewer directly. In computer games today, however, it is unlikely that you will have so large a polygon budget that significant numbers of triangles can be lost this way. I believe the CPU cost and the extra complications in the data structures that this needs outweigh the slight decrease in rendering cost. This kind of optimisation would be more useful in a custom renderer for curves, such as cubic splines.

Which vertex should the edge collapse preserve?

This is quite simple – lose the vertex on the smoothest part of the mesh. If you’re collapsing a corner onto a vertex somewhere in the middle of a continuous surface, obviously the corner should survive.

When should the collapsing stop?

Traditionally progressive meshes have always had a base mesh which was the lowest level of detail version of the mesh. If I were to have done this, many of my small single-skin meshes would not have collapsed as far as possible, leaving many more polygons on screen than necessary. I allowed edges to carry on collapsing until there was only one vertex left in the object.

Implementation decisions and issues

A stateless object format

By this I mean that you could use the same data structure over and over if you wanted 50 buses on screen at the same time. This is good for caching. The simplest stateless algorithm to describe (rather than necessarily the most efficient) is where the vertices are stored in the order that they appear when the level of detail is increased, as are the triangles. Each vertex has a pointer to the lower level of detail vertex that supercedes it when detail is lost. The triangles are also stored in level of detail order, and they contain pointers to the highest resolution vertices to which they refer.

[image: image7.wmf]vertex

list

triangle

list

geom

etry that exists

at

low detail

geometry that only

appea

rs at

high detail

0

1

....

a

b

c

1

0

....

n

a

’

a

”

each vertex has an a

ncestor

A simple PM data structure

When the renderer is asked to render the mesh at a certain level of detail, this detail is measured in the number of vertices to be considered. A lookup tells the computer how many triangles this corresponds to. The code then runs through that many triangles. Each triangle points at the highest level of detail vertices that it refers to (which may not be ‘live’ at the current level of detail). For each vertex of these triangles the code can then walk back through the chain of pointers until a live vertex (ie one whose index is less than the current total number of vertices) is found.

[image: image8.wmf]0

1

....

a

b

c

1

0

....

n

c’

c”

curre

nt LOD cutoff

The data structure in use. Triangle n will refer to vertices a, b, and c” this frame

This of course is by no means optimal. The main hit is walking through the chains of vertices, which are all random accesses into memory. Many optimisations can be made, such as storing some lower level of detail triangle lists where the triangles point directly at lower detail vertices.

In all, however, algorithms with a little more state win. The simplest algorithm is one where a separate triangle list is stored for each instance of every object on-screen. As before, the vertices and triangles are stored in increasing LOD. The changes to the mesh that occur with each edge collapse are stored in a separate list, and the triangle lists are edited by these as they gain and lose detail. The only state that changes is the triangle lists. Progressive meshing is reduced to a triangle list modifying algorithm, and only a few of these modifications occur in the entire scene per frame.

The advantage of an algorithm with per-instance state is that other state can be recorded, such as the face normals to be used for back face culling. The question of whether or not to back face cull is a tricky one. Without back face culling you can be send unmodified triangle and vertex lists off to Direct3D each frame if no detail level has changed, and this is usually worth not having to trawl through the data structures. The main argument for back face culling is if you have a scene where some textures will not be needed because the billboards or shop fronts that they are on are facing away from the viewer. In ‘man-made’ scenes (rather than those depicting nature) this can be quite a performance gain.

Textures

[image: image9.wmf]

 EMBED Word.Picture.8 [image: image10.wmf]

 EMBED Word.Picture.8 [image: image11.wmf]

1) Original shape
 2) Trivial collapse
 3) Complicated collapse

The collapse of the positions of two vertices can have different effects on different textures

The collapse of vertex positions can be quite independent of the collapse of texture coordinates. Here it can be seen that in the complicated collapse, the vertex that remains has now inherited a new texture. Though it seems that the collapse has changed the look of the mesh too much, remember changes this drastic occur when the object is very small, and needs as much reduction in polygon count as possible. There are several ways to avoid complicating the algorithms because of this:

· Don’t collapse vertices together that don’t have exactly the same set of smoothing group/texture combinations. This significantly restricts the number of collapses possible, especially as meshes become very low detail.

· Create texture coordinates some other way, e.g. by having a planar mapping function for each material.

· If there are two triangles with corners at the same position but with different texture coordinates, do not share the vertices at all. What was the collapse of one vertex onto another can turn into the collapse of several pairs of vertices that share the same position in space. You have to be careful here – the collapse of two vertices together may move the position of some other vertices that share the same position but not texture coordinate. An example of this would be the vertex for the white texture in the third case above. Though it does not pair up with any other vertex, it does move.

In my case I opted for the third system for view-independent meshes. A rather more complicated system was needed for view-dependent meshes because of the renderer used. In reflection I would have been interested in the second option of creating texture coordinates some other way, though this would have required a separate editor for the artist rather than just exporting out of a standard 3D package.

Interpolating between levels of detail

As most people do, when I first programmed this I believed that I had to smoothly interpolate between the levels of detail. When a new vertex appeared, it couldn’t just pop into being, it had to start at the same position as its parent, and gradually move out as the viewer got closer. This involved a little extra calculation, but not much, and people loved the smooth organic way that the mesh grew and collapsed as I varied the level of detail.

Surprisingly perhaps, just popping not only is cheaper but looks better. First there is the maxim of LOD that states that this is code that is affecting the parts of the scene that are insignificant anyway. Then you realise that because of interpolation, for a given polygon count, you are drawing a scene that is partway between the level of detail that this polygon count merits and the next lower level of detail. So for the extra CPU cost you are actually drawing an apparently less detailed scene than you would have done if the vertices had just popped into their correct positions straight away.

Texture cache

Again, we wanted something that would incorporate level of detail. The problem was that in any one scene there could be many different textures visible, but many of them would be quite small. A conventional texture cache would have been adequate but I wanted something better.

I invented a term ‘Mipmapfactor’. Mipmapping means that every texture is stored at many different resolutions. Any texture that is being rendered 128 texels (texture pixels) wide is not going to refer to any of its versions that are greater than 128 pixels wide. If I could quickly calculate the maximum mipmap page that is used for each texture each frame, I could load the textures in at only that resolution. Each drop in one mipmap level corresponds to reducing the texture RAM usage by a factor of 4.

I shall briefly describe some of the different maths that I considered for this calculation. When you turn on mipmapping, the rasteriser will never draw a texel smaller than a pixel. The card makes sure that neither axis of the texel is smaller than a pixel. When the triangles are quite close to edge-on to the screen, the texture becomes really low resolution in one direction because one of its two axes is foreshortened. With isotropic mipmapping, the whole texture becomes low resolution, which is quite an artefact quite familiar to any 3D programmer. For even one triangle the calculation of the smallest edge length of a texel is quite complex, mostly because of perspective correction. It certainly is not practical for real-time work.

The first method I used was where each vertex in every object was given a number, which was the maximum length of a texel in 3D space at that vertex. Dividing this by the z distance of the vertex from the gives the maximum length of a texel on-screen (this can be reduced to a multiply because the reciprocal of z is needed for the perspective transform, assuming you are doing your own geometry). I say maximum because it does not take into account the orientation of the polygons hanging off that vertex. Edge-on polygons will use a lower resolution when using isotropic (rather than non-isotropic) mipmapping, which means a further reduction in texture cache usage could be possible. Ignoring this is all right, though, because it produces a pessimistic estimate. At the end of the geometry calculation, you will have a pessimistic but at least never too optimistic value for which mipmap level you will need.

A non-perspectively correct method is to take the on-screen area of the triangle in pixels and divide that by the area in texels, which will give you an indication of how big the texels are. This pressures the texture cache a lot less by requesting much lower texture resolutions, but unfortunately too low - particularly on quite edge-on polygons, it is over-optimistic to the extent of being unacceptable.

In the end, especially once I realised that I was going to do mostly view-independent progressive meshing and therefore was treating each object as an atomic quantity, I just had a MipMapFactor per texture per object. This did not help the texture cache as much but removed my one extra multiply and one compare per vertex.

In texture memory, there was a selection of textures available of different sizes, with more low resolution slots than higher resolution ones. When a new texture was needed in texture memory, or an existing texture needed to change resolution, there were a series of quite obvious rules to decide which was the best slot to copy the texture into.

Z-buffer

The trouble with having such a great depth of field is that either you get z-buffer artefacts or you need a distant near clip plane. In order to partition your scene into as many small view-independent meshes as possible, you have probably also built it out of small mutually intersecting (or at least near to each other) objects rather than one large single skin. This has the advantage of course of reducing the polygon count, but does increase the chance for artefacts.

I believe you should pass reciprocal z into the z-buffer. This point is nothing to do with PM or any other clever engine tricks. This is because 3D cards linearly interpolate the D3D .sz (the z that gets passed to Direct3D) value across the screen as they draw triangles, which is only correct if the .sz value is reciprocal of distance. If you pass z into the z-buffer (paradoxically) you will get intersections between objects appearing to slide around, and objects that are near each other will occasionally intersect, particularly if one object has significantly larger polygons than the size of the other object. This is why people have invented w-buffering, which does not solve my artefacts problem, simply because more is needed than such a simple solution.

Of course, if you are committed to using D3D geometry, you cannot make these kinds of decisions, but some of the following will be relevant.

My solution worked so well on a 16-bit z-buffer that it moving up to 24-bit buffers had practically no effect. If you pass 1/z, the far clip plane is not significant - 1/20000 (for example) is about the same as 1/10,000. As z decreases though, reciprocal z starts increasing rapidly, so the near clip plane is all-important. I just varied the near plane from frame to frame. If you made the plane as far away from the eye as possible, you would only get artefacts in the distance when there was something interesting in the foreground, distracting your attention from the problems far away. The artefacts appear in the distance because the z-buffer resolution is used more on nearby polygons when they exist.

[image: image12.wmf].

sz

1

0

vertex z

 0 N F

 EMBED Word.Picture.8 [image: image13.wmf]

0 N F

.

sz

1

0

vertex z

[image: image14.wmf] 0

.

sz

1

0

vertex z

Three different ways to treat the z-buffer.

1) Linear, sz invalid beyond far and in front of near planes (F and N), though near plane can be zero

2) Reciprocal z, far plane has little effect, near plane critical, cannot be 0

3) Combination, now z’s of 0 and infinity can be represented

The problem with this solution is how to work out what the minimum z should be for each frame. You could do some clever estimates based on the radius and position of objects near the camera. I just tested each on-screen vertex to see what the minimum z was for the whole frame. The disadvantage with this (apart from the compare per vertex to find what is the minimum z for the frame), is that you only find out what the near clip plane should have been when the scene is finished. By this time you’ve committed to sending data to the 3D card already to keep it busy and to send the data while it was still warm in the CPU cache. Which means you find out what the near clip plane should have been just after you needed the information.

The imperfect solution is to have the near clip plane be about 70% of the previous frame’s minimum z, but this means you may have objects disappear out of view for a frame if they get close enough to the camera fast enough. A friend of mine (Martin Bell, working for Bullfrog Productions) thought of a simple solution. He suggested sending 1/z to the zbuffer normally, but pass a linear function of z for any vertices that are nearer to the camera than the near clip plane. I use this, and it means that I do not have a near clip plane where polygons disappear. All that happens is that if you move fast enough to see the near clip plane effect at all, all you get is a little perspective incorrection for one frame only. This is because I am passing a similar value to .rhw (the perspective correction value), so that .rhw does not go out of range. I can therefore represent any z in this z-buffer, from zero to infinity.

One subtle point is that of alphas and sprites. These are the scene details that are most likely to come extremely close to the camera (especially the water alpha). Gouraud-shaded untextured polygons and sprites need no perspective correction. This means that they need not affect the position of the near clip plane. Without this extra modification, walking through a translucent polygon or having smoke sprites turn up nearby can visibly reduce the z-buffer resolution of the rest of the scene.

Portals

When writing a city engine I thought through many different systems for avoiding drawing occluded parts of the scene. I came to the conclusion that outdoors in a fairly general polygon mesh there was no system that would beat just living with overdraw. Of course the first thing that happened is that people wanted to go indoors and there the engine started to look really inefficient for drawing all the outdoors while you were in a small room. I decided that ‘portals’ were the simplest system to bolt on. A BSP tree would not work in my scenes where the scene geometry changes from frame to frame.

‘Portals’ is the term I use for having rooms as meshes which are connected to each other by planar doorways made out of rings of connected vertices. If the portal polygons are visible, the room beyond is also. You start the render by considering the room the camera is in, and its portals. Each room visible through a portal is rendered and its portals considered. If a portal is visible, the room on its other side is rendered, meaning more portals are considered and so on. Each portal is only considered if it is visible through its ancestor portal.

The main problems that people expect from portals are that somehow you have to build code to detect where the rooms and doors are, and also that the rooms must be convex. I found that artists did not mind at all the few minutes’ extra work to group polygons together into rooms and doors. I also had no convexity restriction, mostly because the code to work out which room the camera was in simply did not assume convexity of the rooms.

Animations

PM is not actually a vertex position technology. All it does is change triangle lists real-time. It does not care what produces the vertex positions or texture coordinates. This left me free to implement any animation system underneath the progressive meshing. If the animation significantly changed the length of edges you could argue that the collapse order should have varied, but I ignored this with no ill effects.

One proviso is that the animation system I wrote had to cost less in the distance. This meant that it should only animate the vertices that were on-screen at that moment. Vertices can also pop in and out of being, so it must be possible to randomly access animation data. This restricts compression systems, particularly any kind of run length encoding – style compression, which must be at least adorned with extra information.

In short, having lots of animating objects, which were high detail close by, and less detailed further away was quite simple. One exception is if you do skeletal animation. It is difficult to somehow reduce the number of bones in the object in the distance. When two vertices collapse together that are on different bones, you can choose which to preserve so that some bones become unused early. If a vertex on an even numbered bone collapses onto one on an odd bone, pick the even bone. If the least significant bit of the bone numbers are the same, consider the next least significant bit and so on.

Other technologies and related points

Generating lightmaps for a scene is a whole talk in itself. Here all I will say is that once they are generated they can be treated just as normal textures, in that they lose resolution in the distance, and the lightmap coordinates must be progressed as the vertex positions are.

Writing a game engine is more than just writing a decent mesh renderer. Special effects such as explosions, shockwaves, weapon effects, fire, smoke and so on can all be rendered at different levels of detail. Fewer sprites can be used for a smoke effect, lightning can have fewer forks in the distance, and so on.

Some people have considered varying the overall level of detail of the scene continuously to keep a level frame rate. I tried this for a while but was not too keen on the results. The problem is stopping the level of detail oscillating around because it is overcorrecting all the time due to delays in the system. Also, when the camera is stationary, it looks strange if the level of detail continues changing. I varied the overall level of detail if the scene became more expensive because more characters turned up, or a large explosion happened, but did not tie it directly into the framerate.

Conclusions and future work

The engine I produced was successful in that it was capable of what I intended. I think the future will be interesting, as hardware begins to accelerate more of the work of a graphics engine. This will serve to restrict what the programmer can do. The hardware will probably become more resistant to changing geometry real-time. This and the increasing power of 3D accelerator cards mean that there will be less and less CPU time to do level of detail work.

I believe there will always be call for level of detail algorithms, even when the hardware can draw so many polygons that it seems unnecessary. We can always stress the hardware by extra passes for detail texturing, bumpmapping, environment mapping and so on, not to mention just covering the screen with more and more layers of alpha effects. It will always be helpful to reduce the detail in the less useful parts of the scene.

_980191734.doc
[image: image1.wmf]vertex

list

triangle

list

geom

etry that exists

at

low detail

geometry that only

appea

rs at

high detail

0

1

....

a

b

c

1

0

....

n

a

’

a

”

each vertex has an a

ncestor

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]vertex

list

triangle

list

geom

etry that exists

at

low detail

geometry that only

appea

rs at

high detail

0

1

....

a

b

c

1

0

....

n

a

’

a

”

each vertex has an a

ncestor

_980191009.unknown

_980191172.unknown

_980191492.unknown

_980191739.unknown

_980191123.unknown

_980190783.unknown

_980193934.doc
[image: image1.bmp][image: image2.bmp][image: image3.bmp][image: image4.bmp]

_980239764.doc
[image: image1.wmf]viewer

vertices may collapse downwards because edges are short

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]viewer

vertices may collapse downwards because edges are short

_980183151.unknown

_980233324.unknown

_980239768.unknown

_980183093.unknown

_980240550.doc

 0 N F

.sz

1

0

vertex z

_980240564.doc

 0

.sz

1

0

vertex z

_980240260.doc

 0 N F

.sz

1

0

vertex z

_980193945.doc
[image: image1.bmp][image: image2.bmp][image: image3.bmp][image: image4.bmp]

_980192293.doc
[image: image1.wmf]0

1

....

a

b

c

1

0

....

n

c’

c”

curre

nt LOD cutoff

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]0

1

....

a

b

c

1

0

....

n

c’

c”

curre

nt LOD cutoff

_980191009.unknown

_980191172.unknown

_980191739.unknown

_980192296.unknown

_980191492.unknown

_980191123.unknown

_980190783.unknown

_980193661.doc
[image: image1.bmp][image: image2.bmp][image: image3.bmp]

_980182987.doc
[image: image1.wmf]edge collapse

vertex split

new

triangles

new

vertices

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]edge collapse

vertex split

new

triangles

new

vertices

_980180731.unknown

_980181117.unknown

_980181391.unknown

_980182943.unknown

_980182989.unknown

_980181325.unknown

_980181066.unknown

_980179629.unknown

_980179858.unknown

_980104651.unknown

_980191025.doc
[image: image1.wmf]Imaginary

curved

surface

vertex

polygon

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]Imaginary

curved

surface

vertex

polygon

_980183135.unknown

_980190990.unknown

_980191027.unknown

_980104651.unknown

_980152259.doc
[image: image1.wmf]

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]_980104150.unknown

_980152289.doc
[image: image1.wmf]

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]_980104244.unknown

_980152229.doc
[image: image1.wmf]

� EMBED MSDraw.Drawing.8.1 ���

[image: image2.wmf]_980104138.unknown

